
Fairness - An Optimization Problem

Final Project
CAS 781

April 27, 2017

Michael Liut

1132938

McMaster University

Prepared for:
Dr. Douglas Down

Issues in Data Centre Design
Winter 2017

Michael Liut CAS 781: Fairness - An Optimization Problem

A Brief Introduction

This report investigates the topic of fairness; which can be fundamentally categorized as either temporal fairness
or proportional fairness. Temporal fairness is when a job’s seniority is a factor used in determining the order
of which jobs are processed.

e.g. given two jobs J1 and J2, if J1 arrives prior to J2, then J1 is deemed to have seniority over J2, thus,
J1 should be completed before J2.

Proportional fairness articulates the concept of a job’s response time being proportional to its job’s size.

e.g. given two jobs J1 and J2, where J1 is a large job and J2 is a small job, if J2 arrives for processing
shortly after J1 it may be fair for the smaller job to complete before the larger. Despite J1 arriving
first, the larger job will take more time to serve, therefore, it is only fair that it waits in queue for a
‘proportional’ amount of time.

Prominent metrics utilized in assessing fairness are measures of slowdown. Slowdown is defined as being R/S,
where R is the response time of a job and S is the job’s size. The maximum slowdown determines the worst-case
scenario, while more often than not the best-case scenario would have the minimum slowdown.

Hereinafter, when we speak of proportional fairness we utilize Slowdown Variance (SDV).

SDV = V ar(
R

S
) = Avg((

R

S
)2) −Avg(

R

S
)2, where

Avg((
Ri

Si
)2) = ((

N∑
i=1

(
Ri

Si
)2)/N) and Avg(

Ri

Si
)2 = ((

N∑
i=1

Ri

Si
)/N)2.

N represents the total number of jobs in the system at a specific time.

In general, we infer that a truly fair policy would guarantee that the ratio between a job’s response time and
size remains constant. Consequentially, the closer to zero SDV approaches the more ‘fair’ the policy is deemed
to be.

Definition 1. Fair: A system is said to be perfectly fair if, and only if, for all jobs Ji and Jk, RJi/SJi =
RJk

/SJk
. In other words, a system is perfectly fair if the slowdown is constant.

It should be noted that a system of jobs can be perfectly fair while having poor performance.

e.g. a system which never processes jobs.

As a result of the stochastic nature of these systems, a perfectly fair and stable policy does not exist. However,
by employing fairness, as defined above, we aim to strive towards this.

This report investigates potential avenues to minimize the SDV by modeling it in terms of an optimization
problem.

1 of 6

Michael Liut CAS 781: Fairness - An Optimization Problem

The Optimization Problem

Given all jobs at a time t, where only one job can be processed at a time, we are looking to minimize SDV.
Recall, SDV = V ar(R

S), where Ri is the response time of the ith largest job and response time of the ith job
to depart, and Si is the size of the ith largest job. N denotes the total number of jobs in the system and Si is
Ci’s respective job size, which is an input. From this, intuitively, it can be seen that every smaller job would
depart before the largest job in our system.

Wherefrom the following optimization problem can be modeled:

min ((
N∑
i=1

(Ri

Si
)2)/N) − ((

N∑
i=1

Ri

Si
)/N)2

s.t. RN =
N∑
j=1

Sj

Ri ≥
i∑

j=1

Sj i = 1, . . . , N − 1

Ri ≤ Ri+1 i = 1, . . . , N − 1

Ri ≥ 0 i = 1, . . . , N

One key element worth mentioning, RN =
N∑
j=1

Sj ensures that the server does not idle. This is extremely

important as a server which can idle may never finish processing a job. Furthermore, the size S of a job is an
input (assumed knowledge when a job enters the system).

Taking this optimization model and converting it into Matlab code, utilizing YALMIP, looks like the following:

1 function [r,Obj]= hw1(S)
2 %S is the input ,(S_1 ,S_2 ,S_3 ,\dots , S_n)
3 n = length(S);
4 %in case it is not in column format
5 if size(S,1) <=1
6 S = S’;
7 end
8 R = sdpvar(n,1);
9 F=[R(n) == sum(S),R>=eps];

10 for i=1:n-1
11 F = F + [R(i) >=sum(S(1:i))];
12 F = F + [R(i)<=R(i+1)];
13 end
14 obj = 0 ;
15 for i=1:n
16 obj = obj + (R(i)/S(i))^2;
17 end
18 obj = obj/n - (sum(R./S)/n)^2;
19 rsl = solvesdp(F,obj);
20 r=double(R);
21 Obj=double(obj);
22 end

Figure 1: Matlab Code — using YALMIP

In general, programs must be robust. A program is only as good as the validity of its results. Therefore, the
following is a proposed, verifiable, solution to the optimization problem:

RN =
N∑
i=1

Si

Ri = RN

SN
· Si i = 1, . . . , N − 1

2 of 6

Michael Liut CAS 781: Fairness - An Optimization Problem

Example 1

Let’s look at a simple example with two customers C1 and C2, where C1’s job has an unknown response
time (denoted as x) and a size of 1, and C2’s job has a response time of 3 and a size of 2. Both customer’s
jobs are assumed to arrive at the same time.

If we are attempting to minimize SDV, then an x = 3
2 would accomplish this.

Proof

Given:
C1: R1 = x and S1 = 1.
C2: R2 = 3 and S2 = 2.

Solve:

min ((
N∑
i=1

(Ri

Si
)2)/N) − ((

N∑
i=1

Ri

Si
)/N)2

(x
1 − 2x+3

4)
2

2 +
(3
2 − 2x+3

4)
2

2

= (2x−3
4)

2
+ (3−2x

4)
2

x
1 · 1

2 + 3
2 · 1

2

= 2x+3
4

= 3
2 , negative solution ignored.

∴ the optimal x-value is 3
2 as our minimized SDV = 0, resulting in a perfectly fair system.

Example 2

Let’s look at another example with three customers C1, C2, and C3. In this case we will be deciding on
what the optimal R-values are based on the inputted S-values: S1 = 1, S2 = 5, and S3 = 10.

Utilizing the Matlab code, from Figure 1, we are able to determine that the objective function SDV = 0
and the decision variables R1 = 1.60, R2 = 8.00, and R3 = 16.00.

Given the results, it is easy to see that the ratio’s between all jobs are equal (i.e. R1

S1
= 1.60

1 which is

equivalent to R2

S2
= 8.00

5 which is also equivalent to R3

S3
= 16.00

10). Thus, resulting in a SDV = 0 and a
perfectly fair system; as defined in Definition 1.

This can also be verified utilizing the solution shown at the bottom of Page 2. The results of which are as
follows:

R3 =
3∑

i=1

Si = 16

R1 = R3

S3
· S1 = 1.60

R2 = R3

S3
· S2 = 8.00

R3 = R3

S3
· S3 = 16.00

∴ as the Matlab output of the modeled optimization solution and the manual solution check are equivalent,
it is safe to assume that these response times truly exhibit a policy to effectively schedule the jobs to make
the system fair.

3 of 6

Michael Liut CAS 781: Fairness - An Optimization Problem

Example 3

Let’s look at a more complex example with ten customers C1, . . . , C10. Again, like in the previous example,
we will be deciding on what the optimal R-values are based on the inputted S-values: S1 = 1, S2 = 3,
S3 = 5, S4 = 10, S5 = 25, S6 = 50, S7 = 100, S8 = 200, S9 = 250, and S10 = 500.

Utilizing the Matlab code, from Figure 1, we are able to determine that the objective function SDV =
0.004147 and the decision variables R1, . . . , R10 = 2.432014, 7.296043, 12.160075, 24.320156, 60.800370,
121.600791, 243.201756, 486.406923, 644.000000, 1144.000000.

Once again, some pretty simple analysis can be seen by visually comparing a few of the results. Let’s
examine the ratios of C1, C5, and C9. C1’s ratio is 2.432014

1 = 2.432014, C5’s ratio is 60.800370
25 = 2.432014,

and C9’s ratio is 644.0
250 = 2.576. Ergo, resulting in a SDV = 0.004147 which is as close to a perfectly fair

system as we can get.

What may stick out immediately is that C9’s ratio is 644.0
250 = 2.576. This is off by approximately 0.1,

whereas the C1 and C5 were found to have the same ratio (i.e. approximately 2.4). As there is both
forced rounding in the Matlab code and from the lack of precision of the CPU where the code was run
on, it was pertinent to verify this with the solution shown at the bottom of Page 2. The results of which
verifies the output and ratio of all results, however, we are interested more so in C9 which gave us a ratio
of 600.1315

250 ≈ 2.4. Thus, upholding the optimization model.

Large N

Finally, let’s look at an example where we have a large N with a linearly increasing set of job sizes. This
case will investigate ten thousand customers C1, . . . , C1000. Furthermore, as per the previous two examples,
we will be deciding on what the optimal R-values are to minimize our Slowdown Variance. Given the
input Si = i for i = 1, . . . , 1000 and an N = 1000 we are able to compute the results.

Utilizing the Matlab code, from Figure 1, we are able to determine that the objective function:

SDV = 0.273789

and the decision variables:

R1, . . . , R10 = 503.049746, 1006.139842, 1509.174441, 2012.228999, 2515.282869,

3018.340683, 3521.392658, 4024.448245, 4527.503853, 5030.559049

.

R990, . . . , R1000 = 498532.498609, 498830.628873, 499219.986481, 499557.119937,

499774.762108, 499942.926861, 500075.882522, 500222.220285, 500324.327541,

500417.729523, 500500.000000

As job i approaches N , it is clear that the rounding error proliferates, however, it is negligible in comparison
to the value at hand. Hence, this ε–value can be disregarded and consequently appropriates the response
times of each job with an equivalent ratio; and perfectly fair system.

4 of 6

Michael Liut CAS 781: Fairness - An Optimization Problem

Conclusion and Future Work

From the examples seen above, it is clear that the optimization problem is modeled well, and better still, has
a verifiable solution that can easily be compared against. This is demonstrated in Examples 1 and 2 quite
nicely. Furthermore, the notion of approaching a large N in a linear fashion was conveyed and proven to have
a slowdown variance of 0.

Where I see this concept propagating to become a successful method for policy implementation is with the
addition of arrival times into the optimization problem. Initially, the task would be to take a ‘snapshot’ of
time and assume that we can acquire (or are given) the job’s arrival time and size, as well as, the number of
jobs Nt that occur at time t. We must also know the total number of jobs M in the system over the course of
the ‘snapshot’. This will be a static policy that will hopefully be transformed into a mechanism that can be
periodically called to schedule jobs in the most fair order.

For example, assuming that we have N jobs and each job has an arrival time At where (AN+1, SN+1) . . .

(AN+M , SN+M). We would also need to assume that Ai ≤
N∑
j=1

Sj for i = 1, . . . ,M . Furthermore, we would

need a constraint that accounts for job’s not being scheduled prior to their arrival RN+i ≥ AN+1 + SN+i.

Secondly, once we have a static policy, we can take periodic and continuous arrival distributions commonly
seen by AWS, Google and Microsoft. Since, in practice, each job’s arrival time would be unknown it may be
advantageous to explore the avenue of developing a predictive model.

P.S. A big thanks to Dr. D. Down and Vincent Maccio for guiding me through the literature, allowing me
to use your technical report for reference, and in assisting me with the formulation of the optimization
model.

5 of 6

END
Final Project

CAS 781

